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Abstract—Hybrid preprocessing, where an analogue prepro-
cessing matrix is used to feed a large antenna array to fewer
up/down-conversion chains, helps reduce hardware cost of mas-
sive Multiple-Input-Multiple-Output systems. Here, we analyze
a variant of hybrid preprocessing, namely hybrid preprocessing
with selection (HPwS), as an attractive solution to reduce this
hardware cost while retaining good performance. In HPwS, the
preprocessing matrix, built from radio frequency (RF) hardware,
has a larger number of input ports L than the number of
up/down-conversion chains K. A bank of RF switches connects
the instantaneously best K input ports to the up/down-conversion
chains. The preprocessor is designed based on average channel
statistics and therefore needs to be updated only infrequently.
This allows for a higher diversity-order and/or simpler RF
hardware than some conventional hybrid preprocessing systems.
In this paper, we propose a generic architecture of HPwS
with a possibly non-unitary rectangular preprocessing matrix.
A novel preprocessor is designed that maximizes a capacity
lower bound for channels with isotropic scattering. In addition,
we study how [, the number of users, and the use of low
complexity RF hardware, such as discrete phase-shifters, impact
system performance. We also present a method to extend the
preprocessor design to anisotropic channels.

I. INTRODUCTION

Multiple-input-multiple-output (MIMO) systems are viewed
as a key enabler towards meeting the rising throughput
demands in cellular systems, due to their ability to boost
spectral efficiency by increasing the spatial degrees of freedom
and/or providing beamforming gains. Massive MIMO (enabled
by using a massive antenna array at the base-station) takes
these benefits to the extreme, while requiring only simplified
transmission methods [1]. Therefore, massive MIMO is one
of the main areas of focus for 5G and millimeter (mm) wave
systems [2]. However, this general trend towards larger number
of antennas is leading to an increase in the hardware cost of
MIMO transceivers. Though the antenna elements are them-
selves cheap, the associated up/down-conversion chains having
analog-to-digital converters, mixers and filters are expensive
and energy consuming, especially for the wide bandwidths
encountered at mm-wave frequencies. In light of this fact,
hybrid preprocessing was proposed in [3], [4] and further
investigated for mm-wave frequencies in [5]-[7], wherein the
N antenna elements are connected to K up/down-conversion
chains, with K < N. This is achieved via a radio frequency
(RF) preprocessing matrix built from RF hardware such as RF
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phase shifters and RF amplifiers, that connects the K up/down-
conversion chains to the N antenna elements.

In conventional single-user hybrid preprocessing, the RF
preprocessing matrix forms beams into the channel subspace
spanned by the singular vectors corresponding to the K largest
singular values of either the channel matrix or the channel
spatial correlation matrix. The former approach, referred to
as hybrid preprocessing based on instantaneous channel state
information (HPiCSI) [3], [5], leads to the highest possible
signal-to-noise ratio (SNR) but requires instantaneous channel
state information (iCSI) across the whole channel dimension.
Since typically N > K, this imposes a significant chan-
nel estimation overhead [8]. Further, the RF preprocessing
matrix needs to be updated frequently (in each coherence
time interval) which puts a very stringent constraint on the
design of the RF hardware. In the latter approach, referred
to as hybrid preprocessing based on average channel state
information (HPaCSI) [4], [6], the preprocessing matrix needs
to be updated infrequently since the spatial correlation matrix
changes relatively slowly and can be learned with significantly
smaller overhead. Furthermore, iCSI is required only in the
channel subspace corresponding to the K largest singular
values of the spatial correlation matrix, thereby significantly
reducing the channel estimation overhead. Despite these ad-
vantages, HPaCSI leads to a low SNR since the preprocessor
beams do not adapt to iCSI.

Even with a preprocessor designed by the spatial correlation
matrix, it is possible to adapt the beams to iCSI through
use of additional RF hardware and selection techniques [4].
In this work we explore a generalization of this approach,
which we call hybrid preprocessing with selection (HPwS),
as an attractive alternate hybrid preprocessing technique, to
achieve performance comparable to HPiCSI while retaining
the benefits of HPaCSI. The block diagram of a general HPwS
system implemented at the transmitter is depicted in Fig. 1.
Here, the RF preprocessing matrix is again designed based on
average channel statistics like the spatial correlation matrix,
but it has L ports, with L > K. A bank of RF switches
is used to connect K out-of-the L ports to the up/down-
conversion chains based on iCSI. The premise for this design
is that, unlike other RF hardware, RF switches can be easily
designed to switch quickly within a coherence time interval.
Since the dimension of the preprocessing matrix is L > K and
switches adapt the effective beams to iCSI, a higher diversity



order and beamforming gain can be achieved in comparison
to HPaCSI, thereby, bridging the performance gap between
HPaCSI and HPiCSI. On the downside, depending on the
design of the preprocessing matrix, the channel estimation
overhead for HPwS may be higher than for HPaCSI. However,
an analysis of the channel estimation overhead is beyond the
scope of this paper. See [8], [9] for some preliminary results.
Also, since the preprocessor has size N x L, as opposed to
N x K for HPaCSI, a larger number of RF components are
required. Varying the number of ports L, thereby allows a
trade-off between performance and hardware cost.
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Fig. 1. Block diagram of a transmitter with HPwS.!

Several forms of HPwS have been explored in the literature,
e.g., antenna selection [9], [10] and beam selection [3], where
the RF preprocessor is either absent or fixed. An exception is
[4], where a preprocessor that adapts to the average channel
statistics was proposed. However in most of the prior work,
the preprocessing matrix is unitary, where the number of
ports (L) equals the number of transmit antennas (NN) and a
single user scenario is considered. These designs are capacity
sub-optimal, especially in spatially sparse channels. In this
paper, we find more a generic design for the preprocessor,
that provides additional beamforming gains. Furthermore, due
to superior beam-shaping capabilities, it is expected that
this improved preprocessor design will yield higher gains in
multi-user systems than in systems with a single user. As a
result, although we optimize the preprocessor for a single-user
scenario here, we also present a preliminary evaluation of its
performance in a multi-user setting via simulations.

The contributions of this work are as follows:

1) We propose a generic architecture of HPwS for
low complexity Multiple-input-single-output (MISO)
transceivers, wherein, the preprocessing matrix may be
a non-unitary rectangular matrix i.e., L # N.

2) We formulate the problem of finding the ergodic capac-
ity maximizing preprocessor design for channels with
isotropic scattering and show that it is an optimization
problem over the Grassmannian manifold.

3) A lower bound on the ergodic capacity is derived and
shown to be maximized by Grassmannian line-packing
the columns of the preprocessor.

4) We study the impact of low complexity RF hardware
like discrete phase shifters on the system performance.

IFor I = K, this reduces to the conventional hybrid scheme - HPaCSI.

5) We study the performance of designed preprocessor in
a multi-user scenario.

6) We present a method to extend the preprocessor design
to more generic channels with non-isotropic scattering.

The organization of this paper is as follows: The general
assumptions and the channel model are discussed in Section II.
The expression for the system signal-to-noise ratio is derived
and the problem for finding the optimal preprocessing matrix
is formulated in Section III. The preprocessor design problem
is solved in Section IV. The simulation results for impact of
number of columns L and impact of reduced complexity RF
hardware and performance in multi-user setting are presented
in Section V. The extension of the design to anisotropic
channels is discussed in Section VI and the conclusions are
summarized in Section VII.

Notation used in this work is as follows: scalars are repre-
sented by light-case letters; vectors by bold-case letters; ma-
trices by capitalized bold-case letters and sets, subspaces are
represented by calligraphic letters. Additionally, a; represents
the i-th element of a vector a, |a| represents the Ly norm of a
vector a, A; ; represents the (7, 7)-th element of a matrix A,
[A].{;; and [A], ;, represent the i-th column and row vectors
of matrix A respectively, AT is the conjugate transpose of
a matrix A and |.A| represents the cardinality of a set A or

dimension of a vector space 4. Also, < is equivalence in
distribution, E(-) represents the expectation operator, P(-) is
the probability operator, I; and O; ; are the ¢ x ¢ and 7 X j
identity and zero matrices respectively, and R and C represent
the fields of real and complex numbers, respectively.

II. GENERAL ASSUMPTIONS AND CHANNEL MODEL

We consider a single transmitter-receiver pair where the
transmitter has N antennas and the receiver has a single
antenna. The transmitter has K < NN up-conversion chains
and implements HPwS where the preprocessing matrix has
L > K ports.? The channel has a transfer function that can be
multiplicatively decomposed into path-loss, a shadow fading
component and a small-scale fading component. Furthermore,
the channel is assumed to have Rayleigh amplitude statistics
and frequency flat and block fading i.e., the channel remains
constant for a coherence time interval and then changes to
a different realization. Under these assumptions, the received
signal during any coherence time interval can be expressed as:

y =+/phTSGu+n (1)

where p is the average channel SNR?, h ~ CN(Q; 4, Riyx)
is the 1 x IV small-scale fading channel matrix, T is the NV x L
RF-preprocessing matrix implemented using RF hardware, S
is a L x K sub-matrix of the identity matrix I, that represents
the switch positions, Gu is the K x 1 data vector from
the up-conversion chains, where G is a K X K matrix that
orthonormalizes columns of TS, i.e., GTSTTITSG = I and

2The presented results can also be easily extended to a single-input-
multiple-output scenario having multiple antennas and HPwS at the receiver.

3The pathloss, shadow fading component and the transmit power term are
assumed to be included in p.



n ~ CN(0,1) is the normalized additive white Gaussian noise.
Here the selection matrix S is composed of those K columns
of I that correspond to the K input ports of T that are
connected to the up-conversion chains via the switch bank. Let
us define the set of all selection matrices as S = {Sy, ..., S|/ }.
This set, referred to as the switch position set, depends on the
hardware implementation of the switch bank. For any selection
matrix S; € S, the transmit power constraint is given by:

u{TS;G,E,{uu’}GISIT} <1
= E,{uu’} <1 @)

where G; orthonormalizes the columns of TS;, ie.,
GISITITS,G; = Ix. Though G, is also a function of T,
this dependence is not shown explicitly for ease of represen-
tation. We assume the transmitter has knowledge of iCSI. The
selection matrix S € S is chosen based on knowledge of iCSI
but T is designed only based on the knowledge of the spatial
correlation matrix R, = En{hth}.

In this work we consider both the cases of L < rank{Rx}
and L > rank{Rx}. While having L > rank{R.} does
not provide any additional diversity benefit, it allows selection
from a larger range of transmit beams, thereby providing addi-
tional beamforming gains. These additional beam choices are
also expected to aid user separation in a multi-user scenario,
as explored via simulations in Section V. For convenience, we
first consider the case of Ry = Iy. Extension to more generic
channels is considered later in Section VI. As R, = Iy, T
is a fixed matrix for majority of this paper, except Section VI.

III. PROBLEM FORMULATION

From (1)-(2) and assuming the use of the capacity optimal
maximal ratio transmission [11], the instantaneous receiver
SNR and the mean capacity can then be expressed as:

_ o otaimtnt
AT ) = max [phTSZGlGisiTh] 3)
C(T) = En{log(l+~(T,h))}. 4)

The main aim of this paper is to find the preprocessing matrix
design, that maximizes the mean capacity, i.e. to find:

Tope = argmaxpcenxo{C(T)}. 5)

Here, with slight abuse of notation, by argmax{} we refer to
any one (of the possibly many) maximizing arguments. Note
that the search space in (5) is CV*L - the set of all N x
L complex matrices, which is unbounded. However, as shall
be shown in the next theorem, many of these matrices are
equivalent and therefore the search space can be reduced to a
bounded region.

Theorem 1 (Bounding the search space). For any T € CN*L,
both T and TAy attain the same mean capacity (4), where
Ay is any arbitrary L X L complex diagonal matrix.

Proof. Let T and Ty = TAy be two N x L preprocessing
matrices where Ay is any non-singular L x L complex diagonal
matrix. For any selection matrix S;, let G; be the orthonor-
malization matrix for T'S;. Then by defining a corresponding

matrix Gy £ SIA(;lSiGZ-, we have:
Gl SITITyS,Gy
= GISI[A;1]'S,SIA}TTTA,S,SIA; 'S,G;  (62)

— Gis!s;sITiTS,S'S,G; (6b)
= GIsITiTS,G, (6¢)
= I[K

where (6b) follows from the fact that SZ-S;r is diagonal and
hence commutes with Ay and (6¢) uses the fact that SISi =
Ix. This proves that G;g9 ortho-normalizes TyS;. Therefore
from (3), following similar steps as above, we have:

v(Ty,h) = max

hT,S,G;, G STTThq
1§i§|8\{p 0 08T ;99 Lo

= max
1<i<|S|

=~(T,h).

[PhTA;'S:S!S:G,GIS!S;S[A; ' T)n'|

This proves the statement of the theorem. O

Now from theorem 1, using Ty = T Ay where:

[Ty
A N St o B
Hole [T] 0|1 T 1]

instead of T in (5), the optimal preprocessor design problem
can be reduced to:

Vi<{i<L

Topt =
Tg

argmaxpc7,{C(T)} where, (7
{T < (CNXL“[TL{Z}’ =1,

Im{Ty}=0Vl=1,.. L}

where, Im{} represents the imaginary component. Notice that
since from the theorem, C(T) is invariant to scaling of the
columns of T, each column [T].., can be considered to
represent a 1-dimensional linear subspace in CV*!, Therefore
(7) is actually an optimization problem over the complex
Grassmannian manifold G(N, 1).4

IV. PREPROCESSOR DESIGN

Notice that in (3) each column of T occurs in multiple terms
of the maximization step, which makes finding the optimal
solution to (7) difficult. In this section we shall therefore
consider an analytically tractable lower bound to (T, h).

For any selection matrix S;, let {u}, .., u’% } represent the set
of ports, and consequently the columns, of the preprocessor
matrix connected to the up-conversion chains. Then for any
preprocessor T € 7g and any k € {1,.., K}, we have:

hTS,;G,G!SITTh'

ot a.aigipt ot t
_ ot t
= h[T] 1y [T] g0

“The complex Grassmannian manifold G(a,b) is the set of all b-
dimensional linear subspaces over a vector space of dimension a with field

C.



where the last step follows from the fact that [T], {uiy belongs
to the column space of the semi-unitary matrix’ TS;G;.
Therefore, from (3), we can lower bound the instantaneous
SNR as:

it T]
S .
¥(T.h) = 1212]s| 19K S K [ph[T]c{“Z}[T}C{“i}h

[Ph[T]c{fz} [T]Z{e}hq @®)

where the last step follows from the fact that each input port,
and therefore each column of T, is picked by at least one
selection matrix for any reasonable switch position set S.
Unlike (3), in (8) each column of T occurs only in one term,
thereby making the analysis easier. For any unit vectors a and
b, let us define the chordal distance between them [12] as:

dehora(a, b) 2 1/1 — |afb|’.

Now following a somewhat similar approach to [13], we have
the following theorem.

Theorem 2 (Line-packing lower bound). C(T) > Cig(T),
where:

Cip(T) = L (g)w_lém {log (14 pmP(1 = %/) ) ©

and 6 = mingzp dehord([T]oqoy, [T]eqpy) for some T € Tg.
Furthermore, if N > 2 and pN > 2, we have:

= max
1<¢<L

argmaxpc7. {CLp(T)} = argmaxpcr, { fenora(T)}  (10)
where, fchord(T) = mina;ﬁb dchord([T}C{a}a [T]c{b})
Proof. Since Rix = Iy, h has complex Gaussian i.i.d.

components and h £ h/|h

h| are independently distributed.

Further, h is isotropically distributed i.e., h<hU for any
N x N unitary matrix U and |h| is Chi-square distributed
with 2N degrees of freedom.

Since log() is a non-decreasing function, from (8) we have:

C(T) 2 Ejy i {log (le?&XL [p|h|21_1[T]C{Z} [T]i{z}ﬁf] ) } '
a (1)
Let us define § = min#b dcl?ord([T]c{a}, [T]C{b}) for T € 7.
Then the selection regions given by:

{1‘1 denora (BT, [T 1) < 5/2}
_ {B‘E[T]C{E} [T]i Bt > 1~ 52/4}

He =

are all disjoint [13]. Since 0 < dehora(a,b) < 1 for any unit
vectors a, b, from (11) we can lower bound C(T) as:

o(T) > L P(BGH[)EM{log (1+p\h|2(17§))}. (12)

=1

Since h is isotropically distributed, from [13], [14] we have:
L ~ §\2N-2
Z]P’(h e m) - L<2> :

=1

5Here, an a x b rectangular matrix A as semi-unitary if ATA =T,

13)

Using (12) and (13) we arrive at (9). Note that T affects
Cra(T) only via the term ¢ (for a fixed L). Therefore, if the
partial derivative of Cg(T) with respect to J is non-negative,
then maximizing ¢ is equivalent to maximizing Cpg(T). The
required condition is 80%5@) >0 i.e.,

(N = DEp, {1og (1 +plhfP(1 - 52/4))}
plh|*5? /4
T+ Bl - 52/4)] -

By upper bounding the right hand side and lower bounding
the left hand sides of (14), we get a sufficient condition as:

3pN 1
> .
4 ~“3N-3

2 Bl

P(|h|* > N)log (1 +

Using the distribution of \h\Q, it can be verified that this holds
if N > 2 and pN > 2. O]

The derived bound Cip(T) is tight only when L is of
the order of 2V [13] and further it is independent of the
switch position set S. However, this bound is easier to analyze
than C(T). Hence, for analytical tractability, we consider the
preprocessor design approach that maximizes this capacity
lower bound, i.e.,

Tp = argmaxpc 7, {fenora(T) } - (15)

Here we implicitly assume the conditions of Theorem 2 hold.
A more stringent design for the preprocessor, that depends on
the switch position set, has been considered in our extended
journal version [15].

Note that (15) is equivalent to the problem of Grassmannian
line packing with chordal distance metric. Several algorithms
have been proposed in literature to find good line-packing
solutions [16], [17]. These algorithms can be leveraged to
design good preprocessing matrices under various hardware
constraints as illustrated in Section V. Note that for L < N,
any N x L semi-unitary® matrix T is an optimal solution for
line-packing (15). Therefore, a generalization of the prepro-
cessor design in [4]: Tsug = [Etx]c{h Ly (where Eiy is the
eigen-vector matrix of Ryx) is optimal for (15), for L < N.
This is not true when Ry, # Iy as explored in Section VI.

V. SIMULATION RESULTS

We first consider a single transmitter-receiver pair where the
transmitter implements HPwS and the receiver has a single
antenna with a mean SNR of p = 10 dB. We consider a
reduced complexity switch bank where each up-conversion
chain has an exclusive set of input ports to connect to, i.e.,

S= {[HL}C{Q,“,ZK}‘(’C—I) l%J <l < /{éJ ke {1,..,K}}.

Since the mean capacity (4) is not known in closed form, in
this section we study the performance of the preprocessing
matrix using Monte-Carlo simulations. Here, we perform a
brute-force search among S to pick the best selection matrix
S for each channel realization. The design of low-complexity
algorithms for selecting S, for a given h, is beyond the



scope of this paper (see [10] and references therein). The
performance of HPaCSI and HPiCSI can be obtained by
replacing S = {Ix} (no selection) and Typacst = [In].. (1:K}
or Typicst = [Eh]c{l:K} in (4), where Ey, is the N x N eigen-
vector matrix of hh with eigenvalues sorted in the descending
order of magnitude. However, note that HPiCSI can actually
attain this performance using a single RF chain.

For now, we assume that all the elements of T can have
arbitrary magnitude and phase. Various hardware constraints
on the preprocessing matrix are discussed later in this section.
Note that this design can be implemented by using a variable
RF phase-shifter and RF amplifier for each element. For such
an unconstrained preprocessor, designed by (15), the mean
capacity as a function of the number of columns of the
preprocessor (L) is studied in Fig. 2. As expected, we observe
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Fig. 2. Mean capacity versus the number of columns of the preprocessing
matrix L (simulation parameters: N = 25, p = 10, T is generated from the
MATLAB implementation [18] of the Grassmannian line-packing algorithm
in [16])

that HPwS bridges the performance gap between HPaCSI
and HPiCSI without requiring iCSI based adaptation of the
preprocessing matrix. Intuitively, we use redundancy in RF
hardware to effectively make the beams more channel adap-
tive. We also observe that there is a diminishing improvement
in performance as L increases and therefore for a good trade-
off between performance and hardware cost, the number of
columns L should be of the order of N.

We next consider the case where elements of T have a fixed
magnitude and the phase belongs to a set of discrete phases,

ie., [T],, = eij%b where ¢, € {0, 22, ..., 2Z2B=11 guch
a preprocessor is easier to implement since it requires only
a discrete phase-shifter for each element of T. For this case,
T that maximizes (15) can be designed using fixed alphabet
line-packing algorithms, such as in [16].% The performance of
HPwS with such a restricted preprocessor is studied in Fig.
3 as a function of the number of possible phase shifts B. As
observed from the results, even for B = 4 the performance is

almost as good as with the unrestricted preprocessor design,

Other approaches for finding a constrained precoder, such as in [4], [6]
may also be used.

Capacity (nats/s/Hz)

——HPaCSslI
—Fixed magnitude, discrete phase, B = 4

O Fixed magnitude, continuous phase, B =
X Unrestricted magnitude and phase
——HPiCSI

15 20 25 30 35

Fig. 3. Mean capacity versus the number of discrete phases (B) of the
preprocessing matrix. For B = 4,00 and L > N, we use the line packed
preprocessors for QPSK alphabet and constant modulus from [16], [18]. For
L < N, we use a N X L submatrix of the N x N real Hadamard matrix
(simulation parameters: N = 8, K =1, p = 10)

suggesting that a good preprocessor can be implemented using
a simple discrete phase-shifter array.

While the preprocessor in (15) is optimized for a single
receiver, here we also study its performance in a multi-
user scenario. The received signal vector at U single-antenna
receivers, each having independent Rayleigh fading channels
with same transmit correlation matrix’, can be expressed as:

yu = +/pHyTS;G;u+ ny

for any S; € S. Assuming the transmitter performs zero-
forcing, by pseudo-inverting the effective channel Hy'TS; G,
the impact of L on performance is studied in Fig. 4. We
observe that for L > N, the slope of the curves, and hence
fractional performance gain, increases with U. This suggests
that the additional beam choices with L > N, may help
improve user separability.

VI. EXTENSION TO ANISOTROPIC CHANNELS

The isotropic scattering assumption i.e., Ryx = Iy in Sec-
tion II was only for convenience and is rarely met in practice.
Practical wireless channels are usually spatially sparse i.e.,
most of the channel power is concentrated within a sub-space,
referred to as the dominant channel sub-space. Such a channel
can be modeled by assuming that R, has a rank D, where
K < D < N. Under these conditions the small scale fading
matrix in (1) can be re-written as:

1/2

h=g[A2]"*[ED) (16)

where g ~ CA(Q1xp,Ip) is a 1 x D complex Gaussian vec-
tor with independent and identically distributed (i.i.d.) entries
and AL B are the D x D, N x D matrices of eigenvalues
and eigen-vectors of Ry, respectively, corresponding to the
D non-zero eigenvalues. Note that even if Ry has a full rank,
it may be beneficial to approximate D < N to reduce channel

TThis is a common assumption for a co-located group of users, see for
example [19].
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Grassmannian line-packing algorithm [18])

estimation overhead [8]. Given (16), it can be shown that the
optimal preprocessmg matrix in (5) should be of the form
Top = E Topt, where Topt is a D x L matrix. This design
ensures that the preprocessor transmits power only into the
dominant channel sub-space, and a formal proof of the above
is included in our extended journal version [15]. Therefore the
preprocessor design problem in (5) can be reduced to finding:

Tor = argmaXTGCDxL{]Eg{IOg(l +:Y(T,g))} (17)
where the instantaneous SNR is simplified to:

1/2 4 1/2 4

5(T,g)= max_|pg[AD] " TS,GGISITTA]]

1<i<)8|

g'| (1)

A. Isotropic in dominant subspace

If Ag( = Ip, we observe that (3),(5) are very similar to
(17),(18), respectively. Therefore, the previous analysis for
Rix =1y in Sections III and 1V, is directly applicable to the
design of T by replacing N by D. Therefore, from theorem
2, assuming D > 2 and pD > 2, a good preprocessor design
that minimizes a lower bound on capacity can be obtained as:

TISO - E TLP (19)

where the D x L matrix Tpp is designed by line-packing,
similar to (15). Furthermore, the simulation results and obser-
vations in Section V are all directly applicable for this case
by replacing N with D. This justifies our use of small values
of N(< 25) in the results in Section V. While usually in a
massive MIMO scenario N may be much larger, these values
are reasonable for D in a realistic channel [20]. The only
exception is Fig. 3 which characterizes the impact of discrete
components on Tip and not on EZ. Approaches to discretize
EL are discussed, for example, in [4], [6].

B. Anisotropic in dominant subspace

In the more general case of Ag( # Ip, let us assume
the eigenvalues in Ag( are arranged in descending order of

magnitude. Then, similar to the approach in [21], we use the
companding trick to design the preprocessor as:

EQ Atx[TLP]c{l}

\/ [TLP}C{e} AR [Trrl.qn

where Typ is the D x L line-packed preprocessor, as in
Section VI-A. Intuitively, (20) skews the columns of Ty, and
therefore also the precorders T,,;;S;G;, to be more densely
packed near the eigen-vectors corresponding to the larger
elgenvalues of Ryx. Note that for L < D, any D x L semi-
unitary’ matrix T is an optimal solution for Grassmannian
line-packing. However, not all such T yield good performance
after skewing by (20). This problem typically does not arise
when L > D. Therefore for L < D, we suggest the use of
Tio=[ W Owp_ryxz | in (20), where W is the L x L
DFT matrix i.e., [W],, = e /v/L. This choice ensures
that T, (and T,y) spail the “best” channel subspace and also
ensures proper skewing in (20).

For simulations, we assume the transmitter has a \/2-spaced
uniform linear array, with N = 100 antenna elements. The
transmit power angle spectrum is given by:

1<(<L (20

[Tani]c{f} =

PAS(0) = e~ E DII(9+ 2 )+e ~DII(G) 4~ MF D16 — ) @

1 for |0 < 7r/36

0 otherwise

where: I1(0) = {

and 7 is a factor that controls the anisotropy of the channel.
The transmit correlation matrix is then computed as:

[Rixlgp = /_7r PAS(f)el™(¢—b) Si““’)de/ /_ﬁ PAS(¢)d¢

It can be readily verified (using simulations) from (21) that, for
all values of 1, Rx has at-most D = 25 dominant eigenvalues
with negligible power outside. We denote the NV x N eigen-
vector matrix of the Ry as E¢, and its dominant N x D sub-
matrix is denoted by EZ. For this channel, the performance
of the skewed preprocessing matrix T,y compared to Tig
is studied in Fig. 5 as a function of the channel anisotropy
for the both cases of L < D and L > D. We also plot the
performance of Ty = [Ex], (1:n)s @ generalization of the
preprocessor in [4]. We observe from the results that the capac-
ity gap between HPiCSI and HPaCSI reduces as the channel
anisotropy increases. Also, unlike with Ty, the performance
of T,y does not degrade with increasing anisotropy. Further,
we observe that T, outperforms Tg,4 over the whole range
of n for both D < L and D > L. Therefore the designed
preprocessor is not only more generic (can be extended to
the case of L > N) but also leads to better performance in
comparison to other designs.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we explore the use of HPwS as a solution to
reduce the hardware cost of massive MIMO systems, without
degrading the performance significantly. We formulate the
problem of preprocessor design and show that a lower bound
to mean capacity can be maximized using Grassmannian line-
packing on the columns of the preprocessor. The simulation



M v
65 e
—
/*//a,/ N
% 6 s —— E——_ 3
o
[
5.
a4 -
/ ~vHPiCSI
5 /) =Ty B
——=Tua
b --Tjs,
-8 HPaCSI

I I
0 20 40 60 80 100 120 140 160 180 200
n

M v
6.5 —
T]\:T 6 - - ——f
2 —
= ="
’;g ———— ég:
§55 / 7
5 ~HPiCSI ||
> ani
l T
-o-Tis
- HPaCSI

+% 20 40 60 80 100 120 140 160 180 200
n
) {D,L,K} ={25,50,2}
Fig. 5. Mean capacity for the skewed preprocessor T,,; as a function of
channel anisotropy. (a) Tiso = [W (O)(D,L)XL} T, where W is the L X L

DFT matrix (b) Tis is generated from the line packing algorithm in [18]
(simulation parameters: N = 100 and p = 10).

results suggest that significant capacity gains can be achieved
using HPwS in comparison to HPaCSI. Similarly, the mean
capacity is only slightly inferior to HPiCSI, with significantly
simpler RF hardware. The results also suggest that for a good
trade-off between performance and hardware cost, the number
of columns of the preprocessor L should be of the order
of rank{Ryy}. However, for multi-receiver scenarios, it may
be practical to use larger values of L. Furthermore, results
show that building the preprocessor with discrete phase shifters
having just 4 possible phases, is sufficient to achieve good per-
formance. Results for anisotropic channels show that skewing
the line-packed preprocessor yields better performance when
compared to alternate designs.

However, the designed preprocessor maximizes a lower
bound that is independent of the switch position set S and
therefore maybe sub-optimal. Furthermore it does not give an
intuition into designing good switch position sets. An analysis
which deals with the above issues is considered in [15].

As is the case with other such diversity techniques [10],
the performance gain of HPwS over HPaCSI decreases with
frequency selective fading. This is because in the limit of a

large transmission bandwidth, frequency diversity makes all
the L selection ports equivalent. Hence, HPwS is more suited
for narrow-to-medium bandwidth systems, where channels are
only moderately frequency selective.
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